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Solution of the linearised Vlasov equation for collisionless 
plasmas evolving in external fields of arbitrary spatial and time 
dependence I 

V SkarkatQ and P V Coveneyf 
ii International Centre for Theoretical Physics, Trieste, Italy 
i Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, U K  

Received 22 December 1989 

Abstract. We solve perturbatively the linearised Vlasov equation describing inhomogeneous 
collisionless plasmas evolving in time-dependent external fields. The method employs an 
explicitly time-dependent formalism and is facilitated by the use of diagrammatic tech- 
niques. It leads to a straightforward algorithm for computing the contribution to the 
solution, order by order, in the external field. In the present paper we provide the solution 
to first order; higher orders are described in the following paper. 

1. Introduction 

The study of systems evolving in time-dependent external fields is of major importance 
in statistical mechanics; it is, moreover, of obvious significance in the context of plasma 
physics and controlled fusion. 

A powerful method for the derivation of kinetic equations in non-equilibrium 
statistical mechanics was proposed by Prigogine et a1 (1969). The idea is to divide 
the time evolution of the distribution function exactly into two independent ‘sub- 
dynamics’, one providing the long-time or asymptotic kinetic behaviour of the system, 
the other describing the transient behaviour due to the initial preparation of the system 
(Balescu 1975). George (1973) extended this approach by showing that it is possible 
to decompose the evolution of a large homogeneous system into a complete set of 
independent subdynamics, rather than only into two parts; Skarka and George (1983) 
later made the generalisation to include inhomogeneous systems. The theory has been 
used to study irreversible processes at the microscopic level (Coveney 1988). 

Recently, an explicitly time-dependent formalism has been constructed as a basis 
for the complete subdynamics decomposition of both isolated systems and those open 
to external influence (Coveney and George 1987,1988, Coveney l986,1987a, b, Skarka 
and Coveney 1988). 

It is natural to consider the application of this microscopic theory to plasmas 
evolving in inhomogeneous and time-dependent electric and/or magnetic fields. Pre- 
viously, Balescu and Misguich (1974a, b, 1975a, b) used the basic division into two 
subdynamics to derive a general kinetic equation for plasmas evolving in time-depen- 
dent external fields. This equation contains, as special cases, the Landau and Vlasov 
equations, as well as the generalisation of the Balescu-Lenard equation; for strongly 
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turbulent plasmas, it leads to the quasilinear approximations of Dupree ( 1966), 
Weinstock (1969) and Kraichnan (1972). 

The Vlasov equation in the absence of external fields is itself of considerable 
importance within plasma physics and elsewhere. It provides a very good description 
of the behaviour of a plasma when collisions can be neglected, and has been the subject 
of intensive study over many years (for example, Backus 1960, Boutros-Ghali and 
Dupree 1981, Davidson 1972, Ghizzo et a1 1988, Krall and Trivelpiece 1973, Misguich 
and Balescu 1982). The classic earlier work focused largely on the simpler linearised 
Vlasov equation, which was treated as an eigenvalue problem by van Kampen (1955, 
1957) and later revamped by Case (1959). An alternative method of solution was given 
by Balescu (1963), based on a resolvent formalism originally introduced by Rtsibois 
(see, for example, RCsibois 1967). 

More recently, Skarka and George (1984) employed a complete correlation sub- 
dynamics decomposition within the resolvent formalism to obtain formal analytical 
solutions of the nonlinear Vlasov equation in the absence of external fields; these 
formal solutions have been explicitly computed by Skarka (1989). For the linear case, 
their treatment corresponds to that of van Kampen and Case, and so may be regarded 
as its generalisation. 

By employing the aforementioned time-dependent formalism, one can now begin 
to consider the solution of the Vlasov equation in the presence of external fields. In 
the present paper, we use analytical techniques based on subdynamics to solve the 
linearised Vlasov equation in an arbitrary time-dependent external field. We emphasise 
that no special assumptions are made about this field. However, the solutions are 
based on a perturbation expansion with respect to the external field, and are therefore 
restricted to situations where such an expansion is valid. Our results also represent 
an important step towards an analogous treatment of the nonlinear Vlasov equation 
(which we hope to deal with in a subsequent publication). We note in passing that 
Mahajan (1988) has reported some interesting exact and almost exact solutions to the 
‘Vlasov-Maxwell’ system describing a variety of plasma configurations with density, 
temperature and current gradients, using an approach which is quite different from 
our own. 

It should be stressed that the subdynamics theory employed herein is rather general 
in scope: it was not constructed in order to handle specific problems. This fact renders 
its applicability to concrete situations somewhat involved. However, precisely by virtue 
of its generality, the theory is capable of transcending the limitations of more specialised 
approaches in dealing with complex problems analytically. Thus, our treatment of the 
Vlasov equation is also instructive as an illustration of the subdynamics formalism in 
action. 

The paper is organised as follows. In  section 2, we recall the salient concepts of 
the subdynamics theory at the level of the abstract operators. In section 3, we fix our 
basic ideas with respect to collisionless Vlasov plasmas in the absence of external 
fields, using the time-dependent description coupled with a diagrammatic approach 
originally introduced by Balescu (1963). Section 4 describes the new situation in the 
presence of an inhomogeneous time-dependent external field, for which the diagram- 
matic approach was recently developed by Skarka and Coveney (1988); in this section, 
the solution of the Vlasov equation is given to first order in the external field (but to 
all orders with respect to the internal interactions). The paper ends with some con- 
clusions in section 5 .  In the appendix, we show explicitly that our solutions indeed 
satisfy the linearised Vlasov equation in the presence of an external field. 
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In order to avoid overburdening the present paper, we continue the analysis to 
include higher orders with respect to the external field in the following paper (Skarka 
and Coveney 1990). 

2. Concepts from subdynamics 

Our starting point is the Liouville equation for the phase-space distribution function 
p(  t )  = p ( q ,  , U,, . . . , q N ,  u N ;  t )  of a single-component plasma consisting of N structure- 
less particles (each characterised by a mass m and charge e )  which, in the absence of 
external 

L is the 

fields, satisfies the Liouville equation 

a 
a t  

i - p (  t )  = L p (  t ) .  

Liouville operator 

L=Lo+A6L 

which we divide into a part corresponding to the free motion of the particles, 

L"= - i  u,*VJ 
J 

where 

(2.3) 

v, = a h ,  (2.4) 

and a part describing the interactions between them, assumed to be mediated by a 
pairwise, central potential V,, 

(2.5) 

A being a coupling constant, and the summations being over each of the N particles 
comprising the system (indicated by subscripts j and n ) .  

The formal solution to (2.1) can be written 

where we have defined the evolution operators U (  t )  = e-'L' and U'( t )  = 
in the second equality denotes the convolution product. 

equation becomes 

the * 

For systems evolving in the presence of time-dependent external fields, the Liouville 

(2.7) 
a 
a t  

i - p ( t ) =  L F ( t ) p ( t )  

where the total Liouville operator has acquired an explicit time-dependence 

L ~ (  t )  = L+ laLF( t )  (2.8) 

with L as in (2.1) while the second term on the right-hand side describes the interaction 
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with the external field 

,$ being another coupling constant. The latter term has the form of a sum of single- 
particle operators because the field acts on each particle individually. Throughout this 
paper, we shall not seek to specify the field and the forces 4 on each particle further. 
From the point of view of future applications of the theory in plasma physics, however, 
the applied field may be any one or combination of electric and/or magnetic fields 
(such as the Lorentz force if laser-plasma interactions are of interest). 

The formal solution of (2.7) can be written as 

(2.10) 

where we have further defined U F  ( t ,  t o )  = T exp{-i j:, L F (  t ‘ )  dt’} ( T  denoting the 
time-ordering operator). Thus one has to deal with a double perturbation expansion, 
with respect to the field and the internal interactions (cf (2.6)). 

2.1. Dynamics of correlations: the ground level 

We shall use a convenient description of the time evolution of large dynamical systems 
which employs the so-called ‘dynamics of correlations’ for the full N-body Fourier- 
transformed distribution function and admits a very useful diagrammatic representation 
(Prigogine 1962, Balescu 1963). There is a one-to-one correspondence between each 
algebraic term in the perturbation series and the associated diagrams. The final aim 
is to compute from p the reduced distribution functions fc (1 G s G N) which, for small 
values of s, determine all quantities of macoscopic interest. Since we shall be interested 
in taking the thermodynamic limit (or T-limit, in which the number N of particles 
present and the volume R containing them both tend to infinity in such a way that the 
density remains finite), the reduced distribution functions for a finite number of particles 
should remain finite in this limit (Balescu 1963). The T-limit is chosen as a convenient 
mathematical device for the computation of the properties of large systems. 

At this stage, one can define a complete set of Hermitian projection operators { P(”’} 
which project out of the Fourier-transformed distribution function the vth correlated 
components p y .  These projectors commute with the evolution operator for free motion 
U’ and also with Lo. 

2.2. Subdynamics for isolated systems: the j r s t  level 

In the T-limit, one can define another complete set of non-Hermitian projection 
operators {II‘”’} in the presence of interactions ( A S L ) ;  these decompose the space of 
the distribution function into a set of subspaces which are invariant under the motion 
generated by L (George 1973, Skarka and George 1983, Coveney 1987a). One can 
now show that the new projectors commute with U and L. Each component 

pi” ’ (  t )  = W ” ’ p (  t )  (2.11) 

evolves independently according to the Liouville equation and thus represents an 
independent subdynamics (the ‘first level’). Moreover, each subdynamics has a leading 
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or privileged component p r ’  in terms of which all other components p r ’  ( F  f v )  are 
given: 

p‘,”’( t )  = t - to )Dl” , ‘p , ( to)  

E @;,)E‘”’( t - to)p: ’(  t o )  3 Cl”,’pl”’( t ) .  (2.12) 

Here C‘”’, and D‘”’ are, respectively, the creation and destruction superoperators; E‘”’ 
represents the evolution superoperator for the vth correlation (George (1973), Coveney 
(1987a)-the latter is of particular relevance as it is concerned with an explicitly 
time-dependent approach). 

2.3. Subdynamics for open systems: the second level or generalised subdynamics 

From the Liouville equation (2.7) and the associated evolution operator U F  it is also 
possible, in the T-limit, to extend the {II‘”)} to a further complete set of projectors 
{P‘”( t ) }  (Coveney 1987b); these satisfy an intertwining relation with U F :  

(2.13) P V i (  t )  U F (  t, t o )  = U F  ( 1 ,  tO )P ‘ ” ’ (  t o ) .  

The projections 

”p(  t )  = pi ’I(  t ) p (  t )  (2.14) 

thus also obey the Liouville equation (2.7). Hence they constitute a generalised (‘second 
level’ of) subdynamics. Again, there are leading components ” p ‘ ” ’ ( t )  = II‘”’P‘”’( t ) p  in 
terms of which all others may be expressed, namely 

” p ‘ ” ’ ( t )  = C:“,’,”(t)E‘,Y’(t, fo)D‘,Y,IV,(to)p(yto) 

= C‘,“,’,,(r)E‘,“’(t, t O ) Y p ‘ Y ’ ( t O )  = @:“ , ’ ,Y ( t ) ”p ‘” ) ( t )  (2.15) 

C‘,“’ and D ‘,“’ are respectively the field-particle creation and destruction superoperators 
(Coveney 1987b); E‘,“’ is the evolution superoperator for the vth subdynamics. 

All these results are algebraically exact in the T-limit (presupposing the validity of 
the statistical mechanical perturbation theory). However, both levels of subdynamics 
require as prerequisites certain additional elements. One is a general theorem in the 
dynamics of correlations (Skarka 1978a, b; Skarka and Coveney 1988). Another is a 
well defined regularisation procedure to handle the T-limit. Such a regularisation has 
been provided by Coveney and George (1987) in the explicitly time-dependent formal- 
ism. It plays a key role throughout the present paper, and the reader is urged to study 
this paper should further clarification of the technique be required. Finally, it should 
be remembered that our approach is non-rigorous, and simply assumes the existence 
and convergence of the various quantities which occur. One has always to check for 
these properties in each case studied. However, we note in passing that Coveney and 
Penrose ( 1989) have very recently established some rigorous results concerning 
existence and convergence properties with respect to the basic subdynamics decompo- 
sition. 

3. The linearised Vlasov equation without external field 

In this section we illustrate how the time-dependent formalism may be used to solve 
the familiar linearised Vlasov equation subject to periodic boundary conditions, written 
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in K-space as 

withyKa( U,; t )  and p,( U,; t )  the inhomogeneous and homogeneous one-particle reduced 
distribution functions respectively. wp is the plasma frequency which depends on the 
number density c ( w i  = 4.rre2c/m). For the analysis of the time evolution in collisionless 
plasmas one starts from the formal solution of the Liouville equation (2.1) with A = e', 
and considers only those contributions proportional to powers of the inverse plasma 
frequency (or equivalently, to powers of e'c)  which are then resummed (Balescu 1963). 
As a corollary, the initial distribution function is necessarily factorised: 

(3.2) 

Moreover, in the linearised case, only a single one-particle distribution function is 
retained. In the diagrammatic formulation, this in turn implies that one need only 
consider the so-called 'loop vertices' (figure 1). 

KO K; K, K, + ... 
! d l  

Figure 1. Summation of loop diagrams contributing to the solution of the linearised Vlasov 
equation (3.1). 

In order to obtain the solution of the linearised Vlasov equation only fully connected 
diagrams of the type shown in figure 1 need to be retained (Skarka and George 1984). 
One proceeds by computing their contributions to each subdynamics. As an illustration 
of how these contributions can be written in the time-dependent formalism and then 
computed in the various subdynamics, consider the contribution of diagram (c) in 
figure 1 to the single-particle distribution function: 

(3.3) 

(the symbol = implying that this is only one contribution to the complete solution). 
In what follows we prefer, in fact, to work instead with the so-called local density-excess 
function 

(3.4) 
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because this is a quantity of direct physical interest (it represents the local deviation 
from the mean plasma density). 

According to the regularisation rules established by Coveney and George (1987), 
we can calculate the contribution of the same diagram to the subdynamics associated 
with the state K,, indicated by the dotted vertical line in figure 1. Briefly, one extends 
to +cc the upper limits of time integrals associated with states to the left of K, (being 
in this sense more correlated than Kj), and to --CO those involving states to the right 
of K, (which are less correlated). Note that this so-called chronological ordering is 
associated with the common convention of reading the diagrams from right to left (in 
the direction of increasing time). The regularisation in fact amounts to the so-called 
if-rule formulated by George (1970) in the resolvent formalism, in which it is added 
to the denominators of propagators arising from more correlated states than the one 
whose subdynamics is sought, while -it is added to the denominators of less correlated 
states. The limit 5 + 0' is intended. 

This prescription, leads to the following chain of equalities: 

where we have replaced V, by its explicit form when the Coulomb potential is used. 
We have also performed the summations over particles; note that the summation over 
the particles j actually corresponds to a summation over all subdynamics because j 
labels the states K, whose subdynamics is taken. 

In the last line of (3.5) we have highlighted the more general structure manifested 
by this contribution by writing it symbolically as one term from the infinite series given 
in (2.12): the factor on the left of the state whose subdynamics has been evaluated 
corresponds to a component of the creation operator, cKOiKJ, while that on the right 
represents a term in the destruction operator, bKJiK,. The tilde on these operators 
implies that we have absorbed the homogeneous distribution functions and the corre- 
sponding velocity integrals into their definitions. 

In the perturbative approach, one must sum a series of such terms involving 
progressively higher orders in the coupling constant e'. Due to the long range of the 
Coulomb interactions, each particle in a plasma interacts with a great many others. 
In order to describe correctly the resulting collective effects (such as screening), the 
perturbation series must be summed to all orders. Moreover, the complete single- 
particle distribution function corresponding to the solution of the linearised Vlasov 
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equation (hence also hK ( 1 ) )  is obtained as a sum over all subdynamics components, 
i.e., we must sum over the particle index j (Skarka and George 1984), a step already 
performed in (3.5). Thus we have 

h K (  t )  = du,{l + J ( K )  + J 2 ( K )  +. . .} e-IK"i'{ 1 + J c c ( K )  +[ J C C ( K ) I 2 + .  . .}fKE(0) 

(3.6) 

where we have recognised that the infinite series in J are geometric and so may be 
summed in closed form. The common term J and its complex conjugate J" are directly 
related to the plasma dielectric function E through the equation 

Using E ,  we can write the local density excess in the form 

r r 

(3.7) 

(3.8) 

where in the second line we have introduced the creation and destruction superoperators 
C and D. 

As an important aside which we shall later wish to employ, we note that, in line 
with the chain of identities in (2.12) and (3.8), we may absorb the destruction operator 
into the initial-time privileged component (the so-called 'post-initial' distribution 
function f'"). By means of this ruse, only the creation operator need be computed. 
As a corollary, one need only compute the subdynamics associated with the states 
present at the extreme right-hand side of each diagram considered. Each such diagram 
is then considered to represent an infinite class of diagrams having the same topological 
structure up to the immediate left of the correlation state whose subdynamics is 
computed, while differing on the right-hand side of this state (the latter part determining 
the destruction operator). This valuable simplification has already been utilised by 
Skarka and George (1984). 

Skarka and George (1984) have also observed (using the resolvent formalism) that 
the results mentioned here coincide with expressions arising from the approaches of 
van Kampen (1955, 1957) and Case (1959). Indeed, each subdynamics ( K , )  describes 
free propagation of an undamped plasma mode corresponding to the eigenvalue K,. uj; 
the superposition of these plane-wave eigenfunctions (summation over subdynamics) 
then yields the exact solution of the linearised Vlasov equation. Consequently, the 
extension of the subdynamics approach (based on the use of singular distributions ri 
la van Kempen) to the nonlinear Vlasov equation amounts to a generalisation of the 
van Kampen-Case treatment (itself equivalent to Landau's Laplace transformation 
solution based upon the method of characteristics). 

However, our main purpose in the present paper is different. Having demonstrated 
that the time-dependent formalism indeed reproduces the well-known results for the 
linearised Vlasov equation, we now turn to a consideration of the solution of the linear 
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Vlasov equation in the presence of time-dependent external fields of arbitrary 
inhomogeneity. 

4. The linearised Vlasov equation in the presence of an external field 

In the presence of a time-dependent external field, the linearised Vlasov equation with 
periodic boundary conditions assumes the K-space form 

(4.1) 

where FK is the Fourier transform of the force due to the external field (equation 
(2.9)). The general subdynamics theory for systems evolving in time-dependent external 
fields was given by Coveney (1987b) (see section 2.3); the formal solution of the 
Liouville equation involves a double perturbation series, with respect to both internal 
interactions ( e26L)  and the external field (16LF) (equation (2.10)). Commencing with 
this formal solution, we use the same criterion as in section 3 to choose an appropriate 
set of diagrams which now include, in addition to loop vertices, external field vertices 
which arise by virtue of the perturbation expansion with respect to the external field 
(the latter having been introduced by Skarka and Coveney 1988). These are shown in 
figure 2, where the diagrams are classified according to the number of external field 
vertices present, the dots between internal interaction loops indicating all possible 
numbers of additional loops, so that for instance the first diagram { M }  corresponds 
to the sum of the whole family of diagrams in figure 1. Moreover, we show in the 
appendix that this choice of diagrams indeed corresponds to the solution of the 
linearised Vlasov equation in an external field. 

Figure 2. Summation of diagrams contributing to the solution of the linearised Vlasov 
equation (4.1) in the presence of an external field. 
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The appearance of more than one line in some of these diagrams (e.g. { V } ,  { W } ,  
{ X } ,  { Y } ,  etc)-the additional lines can only start and end at external field vertices 
(Skarka and Coveney 1988)-is a mark of the non-trivial modification of the dynamics 
caused by an inhomogeneous external field. 

4.1. Diagrams with a single external field vertex 

As before, each diagram has a one-to-one correspondence with a particular term in 
the (double) perturbation series. For example, consider a particular diagram from the 
class { N }  in figure 2; this is reproduced in greater detail in figure 3 ,  which shows 
explicitly the various time variables entering into the nested convolution whose 

Tl 
A r ' T, %-TI ' TL ' - t o -  T-T1-T2-TJ-TL 

KO, KO, ! 2 Kola 0 KO,< ! !e  KOld 0 KOlL - ' Fl - SI:[ ' I  P 
4 - -  ' J -  

5, 

Figure 3. A single diagram in the class { N }  (in figure 2) ,  displaying wavevectors and time 
intervals. 

algebraic expression is written following the one-to-one correspondence 

Note that, for convenience, the external field is written in o-space by Fourier- 
transforming with respect to t :  

(See also the appendix for an explicit computation involving the external field vertex 
alone.) Observe also (equation (4.2)) that the velocity derivatives associated with the 
internal interaction vertices act only on the appropriate initial homogeneous single- 
particle distribution functions 9,. By contrast, the velocity derivatives associated with 
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the external field vertices continue to act on other parts of the expression. It is therefore 
very convenient to introduce abbreviations for both the internal interaction vertex 

(4.4) 

and the external field vertex 

Fib FK~(W,, ~ b )  (4.5) 
We shall find it convenient to introduce at this point some additional definitions for 
the velocity difference, and the wavevector and frequency sums 

00 = U, - U, 
KO, =KO+ K1 

w,2 = 0 1  + w2 (4.6) 

as well as a compact notation representing velocity-, 0- and K-integrals I d r =  1 dv,. . . doj 5 dw, . . . I dw, I dK, . . . 5 dK,. (4.7) 

Now (4.2) represents a description in the dynamics of correlations (the 'ground 
level' of section 2.1). Note that the external field vertex introduces a new feature: on 
either side of this vertex one has convolutions of the form previously discussed (section 
3), but these are now coupled together by virtue of the convolution with the field. The 
field vertex divides the diagram into intervals of time denoted by capital letters 
( Tl, T2,  etc). Within each such interval the system evolves through a succession of 
internal interactions (loop vertices); as in section 3, these are denoted by Greek letters 

In order to obtain the contribution of this diagram to the single-particle distribution 
function or, as we prefer, the local density excess (equation (3.4)), one computes 
initially the contributions to the first level subdynamics (section 2.2). Within each time 
interval T, we can choose one state labelled by a wavevector with which a first level 
subdynamics may be associated. There will be as many such dynamics as there are 
time intervals T, (including the interval { t - to - Z,T,}), delimited by external field 
vertices (see figures 2-5). Thus, evaluating separately the first level Ko,,-subdynamics 
to the right of the field vertex and the KO,-subdynamics to the left (each denoted by 
dotted vertical lines in figure 3) in the usual way (as described in section 3), (4.2) 
becomes 

( T , ,  7 2 ,  etcl. 

(4.8) 
In order to integrate first over the time interval T~ corresponding to the chosen 

subdynamics, the integrals over T~ and T~ have to be interchanged following the 
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prescription of Coveney and George (1987). However, all other integrations follow 
the same ordering as in figure 3. After integration over all 7-intervals we obtain 

where in the last line we have rewritten the expression in terms of creation and 
destruction operators appropriate to the first level subdynamics (cf (3.5)). For this 
particular case, however, in the interval T, we have only a contribution from a creation 
operator, because of the choice of subdynamics made (U3 = 1). 

We next pass to the second level of subdynamics (section 2.3), repeating the same 
series of manipulations but now with respect to the variables TI ,  T2, etc. In the first 
level we took the subdynamics associated with some given wavevector; second level 
subdynamics can only be taken with respect to our previously chosen first level 
subdynamics (i.e. KO,, and KOb in the present case). Thus, for example, if we wish to 
isolate the second level KO,,-subdynamics from this diagram (denoted by a second 
dotted vertical line in figure 3), we extend the upper limit of the TI integral to +CO, 

since the time-independent subdynamics KOb to the left of the field vertex is more 
correlated: 

(4.10) 

We emphasise that in the final expression the same ordering of propagators and 
interaction terms reappears as in the corresponding diagram (figure 3). In the final 
line, we have again formally grouped the terms involving the creation and destruction 
operators which are now, however, time-dependent, and between which sits the propa- 
gator E for the generalised subdynamics associated with the state of interest K O , ,  (cf 
section 2.3, equation (2.15) and Coveney 1987b). Again, because of the choice of 
subdynamics made, in fact we have only a (second level) creation operator in this 
case. In general the destruction superoperator can be included in the initial distribution 
function defined as the post-initial one (Skarka and George 1984). Therefore, in the 
same way as was done in section 3, we can always choose the generalised subdynamics 
to be associated with the initial first level subdynamics (on the extreme right of the 
expression), taking into account that the contributions from all other possible second 
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level subdynamics are already included in the post-initial distribution functions in the 
lower-order expressions. 

In (4.10) we recognise integrals over the same velocity variable as the one appearing 
in the corresponding propagator and derivative (the two terms in braces). They are 
on the left- and right-hand sides of their respective subdynamics propagators, and 
therefore they correspond to J (  KO) and J c c (  K O , )  (equation (3.6)) respectively. These 
J-terms are independent of the others because each loop vertex changes the particle 
label. Note that the two propagators immediately before and after the external vertex 
(corresponding to the part F of the diagram in figure 3 associated with the bold line), 
which necessarily share the same particle (b), cannot be included in these J quantities; 
this is also the case for the propagator corresponding to the initial state P (drawn in 
bold), since there is no vertex (derivative) on its right. The same is true for the 
propagators associated with the subdynamics which, together with their derivatives, 
we denote So and S,, since they are respectively the contributions from the parts So 
and SI of the diagram (appearing there also in bold). Since the propagator S ,  is chosen 
to be associated with the generalised subdynamics, it is relabelled E as in figure 3.  
Here, however, So partially coincides with F, and so we denote the whole sequence 

If S, = E partially coincides with F, we use the notation FE to maintain the 
temporal ordering of the sequences. It is important to observe that J ( K o )  and Jcc (Ko , )  
were already obtained when the first level of subdynamics was computed and remain 
unchanged when the second level is taken. This is because the latter is realised from 
the convolution of exponential propagators containing wavevectors associated with 
first level subdynamics alone. 

Using the symbols F, So, E = SI, J, etc to denote both the algebraic terms and the 
corresponding parts of the diagram whence they arise, we can write (4.10) in the 
following way: 

JF&EJ'"P (4.11) 

since the contributions from each bold section of the diagram are unaltered by the 
presence of the others. 

Let us now consider the whole family of diagrams { N )  in figure 2 consisting of a 
single external field vertex and all possible numbers of loops, which we reproduce in 
more detail in figure 4. 

T t - to  
A- 

I I1 

I ,I 
I I1 

. . .  . . .  e o  t . .  0 11 8 . . . 0  

50 F S3 SE P 

Figure 4. The class { N }  of diagrams with a choice of subdynamics made. 

For progressively increasing numbers of loop vertices, their contributions corre- 
spond to the terms J ( K ) ,  J 2 ( K ) ,  J 3 ( K ) ,  . . . , at the right of the state associated with 
the first level subdynamics and J " ( K ) ,  { J c c ( K ) } 2 , .  . . , at its left. As we described in 
section 3, both of these series of terms form infinite geometrical progressions whose 
sums are respectively l / & ( K )  and I /E '~ (K) .  Formally, E belongs to the creation 
operator, while E" belongs to the destruction operator. At each side of the external 
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field vertex the same structure will appear, as illustrated in figure 4. When we calculate 
the second-level subdynamics these contributions, and consequently the dielectric 
function, remain unaltered. 

We can now proceed to write down the contribution arising from the sum of the 
whole family of such diagrams with the same choice of subdynamics 

1 1 1 1 8 voog - Ft ha- i , $ -Ko~u ,+Ko ,~u ,+w,  E ( K )  -i,$-Ko.ubg dub 

(4.12) 

We have summed over particles c and g: here the summation over particles is equivalent 
to a summation over subdynamics (a point already made in connection with (3.5)). 
Equation (4.12) can be written symbolically in the following way: 

1 1 1 1  
- S o - F - E - P  
e ECC E ECC 

(4.13) 

This formula does not include the cases when either one or the other or both 
subdynamics propagators So and E coincide with propagators sharing the same particle 
with the external field vertex, i.e. which belong to F (denoted respectively ,,F, FE and 
,70FE). The case when So belongs to F has already been encountered in figure 3. In 
order to obtain the solution of the Vlasov equation we need to sum over all subdynamics. 
Adding the contribution from the sum of the whole family of diagrams with this 
particular choice of subdynamics (equation (4.10)) to that found from the other choices 
given in (4.12) we obtain 

1 

i 6 - KO u, + KO, * u, + o , 

(4.14) 

where 8, is the Kronecker delta. 
The second, in general distinct, choice of second-level subdynamics arises when 

this subdynamics is associated with the propagator immediately to the right of the 
external field vertex, ( E  c F, a situation denoted symbolically as F E ) .  Then both vertex 
and propagator share the same particle index (as in figure 5 )  and do not commute 
owing to the presence of a common velocity derivative. 
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T t - to -T  
A A 

T1 T - T ~  ' ' T2 T3 f-t,-r-T2-Tl ' 
Ko0 KOb ! 2 1 :  Koib a KO*( KOld 

i s,~,il P 

' sc - -  E r  

- .  
* < -z J i- - -  

Figure 5. A diagram from the class { N }  with a particular choice of subdynamics. 

In figure 5, the remaining first-level subdynamics is also associated with the state which 
carries the same particle index b (i.e. it is immediately to the left of the external vertex 
concerned). In such a situation, we denote the region around the external-field vertex 
by 

hb,( t )  = l dT lo+= dr ,  e'-'-IKn cub'Tl i Ym0, 

The contribution of this diagram is expressed as 

d T  e l ( w , - - K o ' t ~ , + K o ,  c d ) J  lo'-'" 
d r2 

(4.15) 

1::- X i F l b . -  d r3  e'c-lKoi'C<IITx i-vlb 

f&,,(Ud; t o ) .  

a v b  a I' 0 

e ( - € - I  KO, ' U h d  1 T~ i y ,  e - I K,,, 'Uc, ( 1 - fo J 

After integration we obtain 

J 

(4.16) 

P.dtice that t,.e propagator So, which is on the left of the vertex F in figure 5,  lies to 
its right in (4.16). Indeed, in (4.15) the external field contains a derivative with respect 
to the velocity of particle b sandwiched between the subdynamical propagators So and 
E, both of which also depend on as well as on the time T. In order to integrate 
over T, both propagators must be collected on the same side of this derivative; as a 
result of their non-commutation with the derivative, a multiplicative factor (in square 
brackets) must be added. By definition, when a derivative carrying a superscript ( 1 )  
acts on a propagator preceded by a bracket labelled by the same superscript, the 
propagator has to be multiplied by the expression inside the square bracket (Skarka 
1989) 

(4.17) 

When this derivative acts on some other propagator no such multiplication occurs 
since there are no square brackets in front of it. 

The sum of the corresponding family of diagrams for such a choice of second level 
subdynamics can be represented symbolically as 

d'" [ 211') 1 - -K1 -- KO, - -KO, - - 
a Ob i t  + K , *  Vb -I- W ,  (it -k K , ,  Ub + ~ 1 ) '  Kl ( i t  + K ,  * v b  + w ] ) ~  

1 1 
,&CP E (4.18) 
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Here, the subscripts preceding and following F have the meaning discussed below 
(4.16). Namely, when two subdynamics propagators So and E share the same particles 
as the vertex F, the propagator So appears on the right of the field derivative F, and 
is preceded by a square bracket. 

Finally, let us consider the case when the first level subdynamics on the left of the 
external vertex is associated with a propagator not contained in F. Since the propagator 
corresponding to this subdynamics does not share the same particle with the external 
field derivative there is no bracket with a superscript. However, the term So has to be 
placed in front of the derivative a/au,,  since it still contains the particle b originating 
from the second level subdynamics (KOlb). All other terms appear in the same order 
as in the corresponding diagram. In symbolic notation we retain the same ordering 
as appears in the diagram, but with the convention that, whenever FE occurs, the 
subdynamics propagator So is placed to its right. 

1 1  1 
-So- F E =  P. 
& E E C  & 

(4.19) 

When the sum over all subdynamics of this type is taken, we obtain in compact notation 

(4.20) 

where the bracket is activated only when its superscript is unity, i.e. when j = s. 

both types of generalised subdynamics. 
We obtain the sum of all subdynamics by adding together (4.14) and (4.20) for 

(4.21) 

This compact expression provides the requisite sum over all subdynamics. It can be 
obtained in a different manner by employing the symbolic notation. This method has 
the advantage of a direct connection with the ordering of terms as they appear in the 
diagrams, and can be translated into explicit algebraic expressions using the conventions 
already established. Thus, we can write directly from the diagrams a symbolic 
expression which includes all possible choices of subdynamics: 

(4.22) 

From this representation, we can write explicit expressions for all the terms, keeping 
in mind the convention that each time we encounter So preceding FE,  the relative 
ordering of these two terms must be inverted. The same is also true for the term ,FE, 
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with the additional insertion of a superscript ( 1 )  on the external-field derivative F and 
a square bracket possessing the same superscript (4.16) and (4.17)). 

4.2. General formula f o r  single external-field vertex diagrams 

In order to prepare the ground for a generalisation including all single external-field 
vertex diagrams, the cases studied thus far in (4.2)-(4.21) will now be further analysed, 
taking into account the one-to-one correspondence between the diagrams and the 
expressions. 

As we have seen, in the framework of the dynamics of correlations (ground level) 
the diagrams are drawn and labelled directly from the original expressions (like (4.2)) 
using their one-to-one correspondence (Balescu 1963). Performing the separation into 
first and then second level subdynamics we reach a qualitatively new stage in the 
description of the system. The correspondence between a final algebraic expression 
(such as (4.10)) and the diagram from which it originates is no longer straightforward, 
but can nevertheless be found (Skarka 1987). It is our task here to convince the reader 
of the truth of this statement when an external field is also in play. 

To this end, let us return to the contributions from the diagrams considered so far. 
In summary, in the first or type-I choice of generalised subdynamics as the one which 
does not share a particle with the external field derivative ( E  G F ) ,  the terms in the 
final expression appear exactly in the same order as in the diagram (see the first two 
cases considered, equation (4.14)). 

The second or type-I1 choice of generalised subdynamics arises when this subdy- 
namics is associated with the propagator immediately to the right of the external field 
vertex so that they share the same particle ( E  = F )  (see the last two cases considered 
in which FE appears). There also, all terms in the final expression follow the same 
order as in the diagram, except for the term So corresponding to the first level 
subdynamics. Although the propagator corresponding to this subdynamics appears in 
the diagram at the left of the external field vertex, in the final expression it is convoluted 
with the propagator associated with the second level subdynamics; carrying the same 
particle label as the derivative, this propagator must be placed to the right of it. 

Each final expression (for example (4.10)) contains three kinds of propagators. 
The first kind are those contributing to the J, F, and P fragments in the diagram. Each 
such propagator is related to the corresponding propagator in the original expression 
(e.g. (4.2)) and therefore directly with the diagram. The original propagator contains 
one eigenvalue of the unperturbed Liouvillian, i.e. the wavevector K, of the correspond- 
ing correlation multiplied by the velocity of the associated particle U,. In the final 
propagator, from this eigenvalue is subtracted the eigenvalue K,.  U, coming from the 
propagator associated with the (first level) subdynamics. To this has to be added either 
+it if the propagator is on the right of the subdynamical one, since it is then more 
correlated, or - i t  if it is on the left, being then less correlated (following the ‘it-rule’ 
of George (1970)). 

1 
(4.23) * i t  - K, * v,, ‘ 

The second kind of propagator (e.g. So) is that associated with the first level 
subdynamics. These arise when generalised subdynamics is computed, in an analogous 
way to the occurrence of the first kind which arise from the first level calculus. Now 
from the original eigenvalue K,. vu is subtracted the eigenvalue K,,. vz corresponding 

- = 
1 

*it  - K, * v, + K ,  v, 
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to the chosen second level subdynamics. The wavevectors are different since they 
originate from both sides of the external field vertex. As a result of the convolution 
integral, in crossing this vertex w,, has also to be added to the denominator. In  addition, 
the sign of it in the denominator is always positive since, having chosen the second 
level subdynamics to be the furthest to the right, all first level subdynamics are more 
correlated 

1 

it - K ,  * v, -k K,, uz + w ,  
(4.24) 

The third kind of propagator is the exponential corresponding to the second level 

The derivative always shares the particle index with the propagator to its left. 
In the internal interaction term labelled by Yr,o, the derivative acts only on the 

homogeneous distribution function of the same particle ( a )  while the Coulomb poten- 
tial depends on the current wavevector K,. 

Finally, the external field term F,,  does not change the particle ( 7 )  but it modifies 
the wavevector. It carries a dependence on the wavevector K, corresponding to the 
difference of the wavevectors (K, and K,, ) on each side of the vertex. 

The general formula for type-I expressions can be now written down in explicit form: 

subdynamics denoted by E. 

a 1 
x e-'")' .- SiK,, V i K , ,  [ dv, au, it - K,, . U, + K,, - vr a% 

where the dots indicate an arbitrary number of internal interaction loop vertices. This 
expression is rendered complete on insertion of the corresponding wavevector and 
particle indices taken directly from any given diagram following a straightforward 
algorithm; it then provides the explicit contribution of the diagram to the corresponding 
subdynamics (Skarka 1989). (It is understood that the particular choice of subdynamics, 
indicated by vertical dotted lines, is also included.) 

Beginning at the left-hand side, this algorithm consists of writing, in the first 
eigenvalue of the first propagator, the wavevector and the particle read from the first 
propagator on the diagram. We emphasise that the algorithm constructs an expression 
written from the left- to the right-hand side of the diagram, in contrast to the way in 
which the diagrams are usually read (since time increases from left to right). The 
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wavevector and particle indices for the second eigenvalue are read from the propagator 
in the diagram which is chosen to be associated with the first level subdynamics 
(indicated by a vertical dotted line). 

Next comes the contribution from the internal interaction vertex; we have already 
noted that the derivative shares the same particle and wavevector index as the propa- 
gator on its left. 

The wavevector index of the external field term is identical to the difference of that 
of the propagators to the immediate left and right of the vertex in the diagram. However, 
the external field derivative shares the same particle as these two propagators. 

Furthermore, in the propagator of the second kind-the subdynamical one-the 
first eigenvalue is read from the propagator (in the diagram) associated with this 
first-level subdynamics, while the the second eigenvalue comes from the propagator 
associated with the chosen generalised subdynamics. Between these two propagators 
appears in general at least one external field vertex which contributes by adding to  
the denominator the corresponding frequency w .  

Finally, an exponential propagator is written corresponding to the state chosen to 
be associated with the second level subdynamics. 

For the type-I choice of second level subdynamics the terms in the general formula 
appear in exactly the same order as in the original diagram (as in expression (4.25)). 
For situations of type 11, the same is true except for the propagator associated with 
the first level subdynamics. As already remarked, this propagator does not commute 
with the external field derivative and must be placed on its right. In such a situation, 
the algebraic expression corresponding to the diagram can be obtained from the general 
formula (4.25) with the position of the subdynamical propagator appropriately 
modified. 

We can now cover all four cases arising within these two choices of second level 
subdynamics by means of a single general expression 

(4.26) 

This expression can be realised in concrete form with wavevector and particle indices 
taken from a given diagram using the above algorithm, but now taking into account 
that we deal directly with the sum over all generalised subdynamics. 

This algorithm and the resulting general formula furnish us with very useful tools. 
They enable us to write down directly the contribution to the solution of the Vlasov 
equation from the sum of a family of diagrams, without the need for tedious com- 
putations. 

Indeed, the general formula (4.25) and its compact version (4.26) are more far- 
reaching than might at first sight be concluded. For going to higher order diagrams 
with two or more external-field vertices does not require the computation ab initio of 
the corresponding expressions. Indeed, the very structure of the diagrams (figure 2) 
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suggests the repetition of the single external vertex patterns which we have hitherto 
studied. This is underpinned by the fact that each loop vertex between external-field 
vertices changes the particle index of the velocity vector, making what follows indepen- 
dent of the velocity of the preceding particle-a property of significance since the 
algebraic expressions contain derivatives with respect to velocities. 

At the first level the computations are done for each subdynamics independently 
of all others. One should recall that, in expressions (4.8) and (4.9), the contribution 
to the subdynamics So on the left of the external interaction vertex is computed 
independently from that originating on the right in S ,  = E. As we have said before, 
the terms involving powers of J (equations (3 .6 ) ,  (3 .7) ,  (4.9) and (4.10))-important 
for the summation of families of diagrams-are dealt with at this stage and are not 
affected by computation of the generalised subdynamics. Therefore, when this second 
level is considered, only the subdynamics propagators participate. In the following 
paper (Skarka and Coveney 1990), we show how general formulae for higher-order 
external-field contributions follow naturally from the first-order expression given by 
(4.26). 

5. Conclusions 

We have obtained the solution of the linearised Vlasov equation describing a collision- 
less plasma evolving in an arbitrary spatial and time dependent external field. In the 
present paper, the solution was performed explicitly up to first order with respect to 
the external field and including all orders with respect to the internal interactions 
(which is necessary to handle collective effects in plasmas). 

The solution corresponds to the sum of the contributions from each class of diagrams 
to all possible first and second level subdynamics. The general formula (4.26) for 
single external-field vertex diagrams enables one to obtain the solution to first order 
in the field by making use only of a straightforward algorithm without the need for 
long computations. Indeed, by using the correspondence between the diagrams and 
the final algebraic expressions which we have established here, the task of computing 
the contributions from the diagrams is reduced to the enumeration and labelling of 
all possible diagrams. An important role in the derivation of general formulae is played 
by the construction of symbolic expressions from the diagrams. The symbols can be 
translated into explicit algebraic expressions by means of the conventions regarding 
their mutual ordering established in the present paper. Such considerations are of 
particular interest when higher-order contributions are considered since the computa- 
tions would otherwise become very time consuming. This situation is discussed in the 
following paper (Skarka and Coveney 1990). 

In summary, our treatment offers a new, microscopic and analytically based 
approach to many fundamental problems in plasma physics, in particular in the domain 
of laser-plasma interactions where strongly inhomogeneous and time-dependent effects 
are of major importance. We hope to return in the future with a detailed discussion 
of some of these. 
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In order to demonstrate that the solution we have obtained indeed corresponds to the 
linearised Vlasov equation in the presence of an external field (equation (4.1)), we 
first compute explicitly the contribution to the one-particle distribution function of the 
diagram with a single external-field vertex (figure 6) 

T f -  T -- 
Figure 6. Diagram with a single external-field vertex 

whose algebraic form is 

This diagram contributes the following term to the generalised (KO + K,),-subdynamics: 

Taking the time derivative of (A2), we find 

a (-1) -+ a 
-fk?l)(t)a- 5 dK, dwFK,(w, U,).{ a t  i 6 + K, u, + w a U, (it + K, - uj + w ) 

+i{(K,,+K,). u,+w} e-'~'Ko+K~)'uitw)' f k!$" ('43) 

After separating out the 'flow term' (Kau,), the remaining part of the exponent is 
combined with the propagator by invoking the Plemelj formula (Balescu 1963) 
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(9" denotes the Cauchy principal value and S is the Dirac S function). Two terms are 
obtained, one contributing to the flow term in the Vlasov equation (4.1) and the other 
contributing to the external field term of the same equation. 

A similar calculation can be performed in all other subdynamics for all diagrams 
which start at the left with an external-field vertex, following the method of Skarka 
and George (1984). (For diagrams of higher order with respect to the external field, 
we must draw on the results of the following paper (Skarka and Coveney 1990).) Then 
one finds that the part of each such diagram containing this vertex (labelled F in 
section 4) contributes precisely the expression (A4). The remainder of each diagram, 
i.e. the diagram with the starting vertex on the left clipped off, contributes to the time 
dependent, one-particle distribution function. The sum of such contributions for all 
possible diagrams in all subdynamics is therefore equal to the distribution function 
f&,(t); in this way we obtain the external field term in the Vlasov equation (4.1) 

Repeating the same procedure for diagrams starting with a loop vertex, we obtain 
the internal force term in the Vlasov equation (see Skarka and George 1984). Finally, 
the contributions to the flow term of both types of diagram together furnish the flow 
term in the Vlasov equation. 
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